
November 2005 www.stsc.hill.af.mil 17

For many years, software engineers
have successfully applied the Unified

Modeling Language (UML) to model-
based software engineering. There have
been several attempts to introduce UML
and the underlying object-oriented meth-
ods to systems engineering to unify the
overall development process. However,
many systems engineers continue to use
classically structured analysis techniques
and artifacts to define system require-
ments and designs.

One reason for this could be that sys-
tems engineering is mostly driven by
functional requirements. Speaking in
terms of system functionality is still con-
sidered the most natural way of express-
ing a design by most of the domain
experts involved in the early phases of
system development (electrical engi-
neers, mechanical engineers, test engi-
neers, marketing personnel, and, of
course, customers). Given this, the only
way to unify the overall development
process is to extend UML with regard to
function-driven systems engineering, and
to define a process that enables a seam-
less transfer of respective artifacts to
UML-based software engineering. The
release of UML 2.0 [1] eventually pro-
vided the missing artifacts for function-
driven systems engineering.

The following sections describe a
UML 2.0-based process that systems
engineers can use to capture require-
ments and specify architecture. The
approach uses model execution as a
means for requirements verification and
validation.

Process Overview
Figure 1 shows the integrated systems
and software engineering process by
means of the classic V. The left leg of
the V describes the top-down design
flow, while the right-hand side shows the
bottom-up integration phases from unit

test to the final system acceptance. Using
the notation of state-charts, the iterative
characteristic of the process is visualized
by the high-level interrupt due to system
changes. Whenever changes occur, the
process will restart at the requirements
analysis phase.

Systems engineering is characterized
by a sequential top-down workflow from
requirements analysis to system analysis
and system architectural design. A loop
back to the requirements analysis may
occur if, during systems analysis or archi-
tectural design, functional issues require a
reexamination of the higher-level require-
ments. The software engineering work-
flow is characterized by the iterative and
incremental cycles through the software
analysis and design phase, the implemen-
tation phase, and the different levels of
integration and testing.

It is important to note the creation and
reuse of requirements-related test scenar-
ios along the top-down design path. These

scenarios are also used to assist the bot-
tom-up integration and test phases and, in
the case of system changes, regression test
cycles.

Key objectives of the systems engi-
neering process are as follows:
• Identification and derivation of

required system functionality.
• Identification of associated system

states and modes.
• Allocation of system functionality and

modes to a physical architecture.
Regarding modeling, these key objec-

tives imply a top-down approach on a high
level of abstraction. The main emphasis is
on the identification and allocation of a
needed functionality (e.g., a target tracker),
rather than on the details of its behavior
(e.g., the tracking algorithm).

Figure 2 depicts an overview of the
UML-based systems engineering process.
For each of the systems engineering phas-
es, it shows the essential tasks, associated
input, and work products.

UML 2.0-Based Systems Engineering Using a 
Model-Driven Development Approach

Dr. Hans-Peter Hoffmann 
I-Logix Inc.

More and more, systems engineers are turning to the Unified Modeling Language (UML) to specify and structure their sys-
tems. This has many advantages, including verifiability and ease of passing off information to other engineering disciplines,
particularly software. This article describes a UML 2.0-based process that systems engineers can use to capture requirements
and specify architecture. The process uses the UML exclusively for the representation and specification of system characteris-
tics. Essential UML artifacts include use-case diagrams, sequence diagrams, activity diagrams, state-chart diagrams, and
structure diagrams. The process is function-driven and is based heavily on the identification and elaboration of operational
contracts, a message-based interface communication concept. The outlined process has been applied successfully at various cus-
tomer sites. It is assumed that the reader is familiar with the basics of UML.

System Analysis

and Design

Software Analysis

and Design

Software
Implementation
and Unit Test

Module Integration
and Test

(Sub-)System
Integration and Test

Figure 1: The Integrated Systems and Software Engineering Process



18 CROSSTALK The Journal of Defense Software Engineering November 2005

The process is operational contract-
driven. An operational contract specifies
system behavior by adding pre- and post-
conditions to the description of respective
operations. Operational contracts are the
primary source of traceability to the initial
requirements.

The essential tasks in the requirements
analysis phase are requirements capture
and the grouping of requirements into use
cases.

The main emphasis of the system
functional analysis phase is on the trans-
formation of the identified functional
requirements into a coherent description
of system functions (operational con-
tracts). Each use case is translated into a
respective black-box model and verified
and validated through model execution.
Incrementally, these black-box use-case
models are merged to an overall black-box
system model.

The focus of the subsequent system
architectural design phase is the allocation
of the verified and validated operational
contracts to a physical architecture. The
allocation is an iterative process. In collab-
oration with domain experts, different
architectural concepts and allocation

strategies may be analyzed, taking into
consideration performance and safety
requirements that were captured during
the requirements analysis phase.

In the subsequent subsystem architec-
tural design phase, decisions are made on
which operational contracts within a phys-
ical subsystem should be implemented in
hardware and which should be imple-
mented in software (hardware/ software
trade-off analysis). The different design
concepts are captured in the deployment
model and verified through regression
testing.

The deployment model defines the
system architecture baseline for the subse-
quent hardware/software (HW/SW)
development. Essential documents that
are generated from the deployment model
are the following:
• HW/SW design specifications.
• Logical interface control document

(ICD).
The outlined systems engineering

process is model-based, using the UML
2.0 as a modeling language. The essential
UML artifacts are the following:
• Use-case diagram.
• Activity diagram.
• State-chart diagram.
• Sequence diagram.
• Structure diagram.
The following sections detail the work-
flow in the different systems engineering
phases with examples from a case study.

Requirements Analysis
Requirements Capture
The requirements analysis phase starts
with the analysis of the process inputs.
Customer requirements are translated

into a set of requirements that define
what the system must do (functional
requirements) and how well it must per-
form (quality of service requirements).
The captured requirements are imported
into the model/requirements repository.

Definition of Use Cases
Once the requirements are sufficiently
understood, they are clustered in use
cases. A use case describes a specific oper-
ational aspect of the system (operational
thread). It specifies the behavior as per-
ceived by the users and the message flow
between the users and the use case. It does
not reveal or imply the system’s internal
structure (black-box view).

A set of use cases is grouped in a use-
case diagram. Use cases can be structured
hierarchically. There is no golden rule with
regard to the number of use cases needed
to describe a system. Experience shows
that for large systems, typically six to 24
use cases are defined at the top level. At
the lowest level, a use case should be
described by at least five with a maximum
of 25 essential use-case scenarios.

At this stage, emphasis is put on the
identification of sunny day use cases,
assuming an error/fail-free system behav-
ior. Exception scenarios are identified at a
later stage (=> system functional analysis)
through model execution. If more than
five error/fail scenarios are found for a
use case, a separate exception use case will
be defined and added to the sunny day use
case via the include or extend relationship.

Figure 3 shows the use-case diagram
of the case study. The system is a main
battle tank. Two use cases are studied:
• Acquire target.
• Engage target.
The actors are commander and gunner.

The use-case diagram is imported into
the model/requirements repository. The
use cases are then linked to the system
requirements and checked for complete
coverage.

System Functional Analysis
In the system functional analysis phase,
each use case is translated into a model
and the underlying requirements then ver-
ified and validated through model execu-
tion. A message-driven approach (Figure
4) is used. Characteristics of this approach
are the following:
• The system structure is described by

means of a UML 2.0 structure dia-
gram using blocks as basic structure
elements and ports, and the notation
of provided/required block interfaces.

• Communication between blocks is
based on messages (service requests).

-

-

-

-

-

-

Hardware/Software Design Specs

Hardware/Software Design 

ICD

System Architecture Model with
Allocated Operational Contracts

Deployment Model with Allocated
Hardware/Software Operational Contracts

Figure 2: UML-Based Systems Engineering Process

Figure 3: Case Study Use-Case Diagram

Design



November 2005 www.stsc.hill.af.mil 19

UML 2.0-Based Systems Engineering Using a Model-Driven Development Approach

• System functionality is captured
through operational contracts (services),
e.g., operation1(),.., operation4() in
Figure 4.

• Functional decomposition is per-
formed through decomposition of
operational contracts.
The black-box use case analysis starts

with the definition of the use case model
context diagram. The UML 2.0 artifact
used for this is the structure diagram.
Elements of this diagram are blocks rep-
resenting the actors and the system.

Identifying the black-box use-case sce-
nario is the next analysis step. A use-case
scenario describes a specific path (func-
tional flow) through a use case. It details
the message flow between the actors and
the use case and the resulting behavior
(operational contracts) of the recipient. In
the UML, a scenario is graphically repre-
sented in a sequence diagram. The lifelines
in the black-box sequence diagram are the
actors and the system (see Figure 5).

Once a set of essential scenarios is
captured, the identified functional flow
information is merged into a common use
case description. The UML artifact used
for this is the activity diagram (see Figure
6). Each action block in this diagram cor-
responds to an operational contract in a
sequence diagram. The black-box activity
diagram plays an essential role in the
upcoming architectural design phase.

Based on the information captured in
the black-box sequence diagrams and
black-box activity diagram, the blocks of
the black-box use case model next are
populated, and ports and associated inter-
faces are defined. Figure 7 (see page 20)
shows the resulting static model of the use
case Acquire Target.

The next step in black-box use case
analysis is the description of system-level,
state-based behavior. The UML artifact
used for this is the state-chart diagram (see
Figure 8 on page 20). State-charts are hier-
archical state machines that visualize sys-
tem states and modes and their changes as
the response to external stimuli. The use
case related state-based behavior is derived
from the captured use-case scenarios.

At this stage, the verification and vali-
dation (V&V) of the black-box use case
model and the underlying requirements
(i.e., operational contracts) can start. V&V
is performed through model execution
using the captured black-box use-case sce-
narios as the basis for respective stimuli. It
should be noted that following the previ-
ously outlined key objectives of this
process, the focus is on the analysis of the
generated sequences rather than on the
underlying functionality.

So far, the use-case model represents
an error/fail free (sunny-day) behavior. At
this stage, it may be extended regarding
possible exceptions (rainy-day behavior).

The outlined steps are repeated for
each use case, except that instead of creat-
ing new activity diagrams, the initial black-
box activity diagram incrementally is
extended based on the information of the
new use-case scenarios. The same applies
to the system black-box state-chart dia-
gram. The subsequent model V&V is per-
formed in two steps: First, the extended
black-box system model is verified/vali-
dated through model execution using the
black-box use-case scenarios as the basis
for respective stimuli. Then, the collabora-
tion of the implemented use cases is veri-
fied through regression testing.

At the end of the functional analysis
phase, a black-box system model is built
of verified and validated operational con-
tracts, representing the underlying func-
tional requirements. The black-box system
model is imported into the model/
requirements repository and the opera-
tional contracts are linked to the high-level
system requirements. The black-box use-
case scenarios are imported into the test
data repository for reuse in the subse-
quent architectural design phases.

Architectural Design
System Architectural Design
Focus of the system architectural design
phase is the allocation of the verified
and validated operational contracts to a
physical architecture. The allocation is an
iterative process and is performed in col-
laboration with domain experts.
Different architectural concepts and
allocation strategies may be analyzed,
taking into consideration performance
and safety requirements that were cap-

Figure 6: Black-Box Activity Diagram (Use Case Acquire Target)

Figure 4: Message-Driven Modeling Approach

MBTac_Cmdr

Figure 5: Black-Box Use-Case Scenario 

UC1BB21
CITV = Commander’s Independent Thermal Viewer
GPS = Gunner Primary Sight



tured during the requirements analysis
phase.

System architectural design starts with
the definition of the physical subsystems.
The UML 2.0 artifact used for this is the

structure diagram. Constituents of this
model are the actor blocks and the system
block. Parts of the system block are the
physical subsystems of the chosen archi-
tecture. In the case study, the system

design consists of six physical subsystems
(LRU = line replaceable unit, see Figure
9A).

Next, the previously identified black-
box operational contracts are allocated to
the physical subsystems using an activity
diagram (white-box activity diagram).
Essentially, this activity diagram is a copy
of the black-box activity diagram. The
only difference is that the system now is
partitioned into swim lanes, each repre-
senting a physical subsystem. Based on the
chosen design concept, the system opera-
tional contracts are moved to respective
subsystem swim lanes. An essential pre-
condition for this allocation is that the ini-
tial links (functional flow) between the
operational contracts are maintained.

The white-box activity diagram is
complemented by the definition of white-
box sequence diagrams. White-box
sequence diagrams are decompositions of
the previously captured black-box
sequence diagrams and are utilized to
identify the interfaces of the physical sub-
systems. In white-box sequence diagrams,
the system lifeline is split into a set of sub-
system lifelines. Based on the allocation
defined in the white-box activity diagram,
the subsystem operational contracts are
placed on respective subsystem lifelines.
To maintain the initial functional flow,
service requests from one physical subsys-
tem to the other may need to be generat-
ed. They define the interfaces between the
subsystems.

In the example shown in Figure 10, the
implementation concept was that LRU1
was considered the commander’s input/
output device. Most of the identified
functionality had to be implemented in
LRU5. The Commander’s Independent
Thermal Viewer control had to be in
LRU6. In this scenario, LRU4 served as a
gateway between LRU1 and LRU5. By
mapping the use case scenario to the phys-
ical architecture, the links and the associ-
ated ports and interfaces are defined for
each involved physical subsystem. For
each physical subsystem, the associated
state-based behavior is captured in a state-
chart diagram. These state-chart diagrams
will extend incrementally with each
mapped use-case scenario.

The outlined process is performed
iteratively for all black-box scenarios.
Figure 9A shows the final result. Figure
9B depicts for the chosen architectural
design the resulting physical subsystem
interfaces by means of an N-squared (N2)
chart. An N2 chart is structured by locat-
ing the nodes of communication on the
diagonal, resulting in an NxN matrix for a
set of N nodes. For a given node, all out-

Design

20 CROSSTALK The Journal of Defense Software Engineering November 2005

Figure 7: Static Black-Box System Model (Use Case Acquire Target)

WaitForCmdrPalmsEngage

Figure 8: Black-Box System State-Based Behavior (Use Case Acquire Target)



UML 2.0-Based Systems Engineering Using a Model-Driven Development Approach

November 2005 www.stsc.hill.af.mil 21

puts (UML 2.0 required interfaces) are locat-
ed in a row of that node and inputs (UML
2.0 provided interfaces) are in the column of
that node.

The correctness and completeness of
the system architecture model is checked
through model execution. Once the
model functionality is verified, the archi-
tectural design can be analyzed with
regard to the performance and safety
requirements. The analysis typically
includes failure modes effects analysis and
mission criticality analysis.

Subsystem Architectural
Design
This phase focuses on the implementation
of the allocated operational contracts.
Decisions are made on which operational
contracts in a physical subsystem should
be implemented in hardware (mechani-
cal/application-specific integrated circuit)
and which should be implemented in soft-
ware. For operational contracts that span
more than one domain, further analysis
will be needed. Subsystem domain experts
may participate in this analysis.

Once the HW/SW design decisions
are made, the workflow is similar to the
one outlined in the system architectural
design phase. In each white-box use-case
scenario, the physical subsystem lifelines
are split into HW and/or SW lifelines,
each representing a subsystem compo-
nent. Based on the chosen HW/SW
design concept, operational contracts then
are placed on respective subsystem com-
ponent lifelines, and the associated func-
tional flow between subsystems and sub-
system components established through
respective service requests (see Figure 11
on page 22). Thus, subsystem component
ports and interfaces are defined. For each
physical subsystem component, the asso-
ciated state-based behavior is captured in a
state-chart diagram. These state-chart dia-
grams will extend incrementally with each
white-box use-case scenario.

The outlined process is performed
iteratively for all white-box scenarios.
The final deployment architecture is ver-
ified through regression testing.

At the end of the system architectur-
al design phase, the deployment model is
imported into the model/requirements
repository, and the HW/SW assigned
operational contracts are linked to the
original requirements. For each physical
subsystem the following documents are
generated from the deployment model as
handoffs to the subsequent hardware
and software design:
• HW/SW design specification.

• Logical interface control document
(N2 chart).

• Subsystem/subsystem component
test vectors derived from the system-
level use-case scenarios.

Conclusion
For a long time, the UML was consid-
ered a modeling language suitable only
for software developers that follow the
object-oriented paradigm. This article
demonstrates that with the release of
UML 2.0 – specifically with the intro-
duction of (composite) structure dia-
grams – the UML could also be applied
to function-driven systems engineering.

Based on this common, paradigm-inde-
pendent language for both systems engi-
neers and software engineers, an inte-
grated systems/software development
process could be defined, allowing a
seamless transition between the two
domains. Still, the UML needs some
extensions to cover the needs of systems
engineers completely (e.g., time-continu-
ous communication). For this purpose,
the object management group formed
the Systems Modeling Language (SysML)
consortium [2]. The first release of the
SysML specification will be in the fourth
quarter 2005.u

Figure 10: White-Box Scenario UC1WB21 (Decomposed Black-Box Scenario of Figure 5)

Figure 9A: Activity Operational Contracts Allocated to an LRU Network Architecture

Figure 9B: Documentation of Physical Subsystem Interfaces by Means of an N2 Chart



References
1. Object Management Group. Unified

Modeling Language. “UML 2.0
Specification” 17 Aug. 2005 <www.
uml.org/#UML2.0>.

2. SysML Forum. “SysML Specification
Vers. 0.9 Draft” 10 Jan. 2005. 17 Aug.
2005 <www.sysml.org/artifacts.htm>.

Design

22 CROSSTALK The Journal of Defense Software Engineering November 2005

Figure 11: Subsystem Architectural Design

About the Author

Hans-Peter Hoffmann,
Ph.D., is director and
chief methodologist for
Systems Design at I-
Logix Inc., a real-time
object-oriented and struc-

tured systems design automation tool
vendor. Focusing on methodology con-
sulting, Hoffman works as an interna-
tional consultant for model-based sys-
tem development. He has 25 years expe-
rience in the design and development of
complex systems in the aerospace/
defense and automotive industries.
Hoffmann co-developed the I-Logix
Integrated Systems/Software Develop-
ment Process HARMONY, which com-
bines Unified Modeling Language
(UML)/Systems Modeling Language-
based systems engineering and UML-
based software engineering. Previously
as director of the simulation depart-
ment of the Missile Division at Messer-
schmitt-Bölkow-Blohm Germany, (now
European Aeronautic Defense and
Space Company N.V.), he developed a
methodology for modeling and analysis
of flight control systems.

I-Logix Inc.
3 Riverside DR
Andover, MA 01810
Phone: (978) 645-3022
Fax: (978) 682-5995
E-mail: peterh@ilogix.com 

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

International Association
of Software Architects
www.iasarchitects.org
The International Association of
Software Architects (IASA) is a nonprofit
organization dedicated to the advance-
ment and sharing of issues related to soft-
ware architecture in the enterprise, prod-
uct, education, and government sectors.
IASA functions as an umbrella organiza-
tion to chapters spread throughout the
world, and as a driving force for research
and standards that advance the under-
standing of software architecture. IASA
helps sustain city chapters by forming
software architecture user groups and by
fostering the sharing of ideas and infor-

mation between these city groups and
industry leaders. 

International Enterprise
Architecture Center
www.ieac.org
The International Enterprise Architec-
ture Center (IEAC) is a global, inde-
pendent, nonprofit professional member-
ship organization dedicated to the dis-
semination of knowledge about enter-
prise architectures, management, and the
marketplace to help members strengthen
their performance and better serve socie-
ty. The IEAC assists in the development
of enterprise architecture frameworks,
methods and disciplines across all enter-
prise environments.

WEB SITES


